
The 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 module
In addition to the 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 and 𝑡𝑖𝑚𝑒 modules, the Python standard library provides a
module called 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 which, as the name suggests, offers calendar-related functions.

One of them is of course displaying the calendar. It's important that the days of the week are
displayed from Monday to Sunday, and each day of the week has its representation in the
form of an integer:

Day of the week Integer value Constant

Monday 0 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟.𝑀𝑂𝑁𝐷𝐴𝑌

Tuesday 1 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑇𝑈𝐸𝑆𝐷𝐴𝑌

Wednesday 2 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟.𝑊𝐸𝐷𝑁𝐸𝑆𝐷𝐴𝑌

Thursday 3 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑇𝐻𝑈𝑅𝑆𝐷𝐴𝑌

Friday 4 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝐹𝑅𝐼𝐷𝐴𝑌

Saturday 5 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑆𝐴𝑇𝑈𝑅𝐷𝐴𝑌

Sunday 6 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑆𝑈𝑁𝐷𝐴𝑌

The table above shows the representation of the days of the week in the calendar module.
The first day of the week (Monday) is represented by the value 0 and the
𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟.𝑀𝑂𝑁𝐷𝐴𝑌 constant, while the last day of the week (Sunday) is represented by the
value 6 and the 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑆𝑈𝑁𝐷𝐴𝑌 constant.

For months, integer values are indexed from 1, i.e., January is represented by 1, and
December by 12. Unfortunately, there aren't constants that express the months.

You will start your adventure with the calendar module with a simple function called
calendar, which allows you to display the calendar for the whole year.

import calendar

print(calendar.calendar(2022))

Expected output:

The result displayed is similar to the result of the 𝑐𝑎𝑙 command available in Unix. If you want
to change the default calendar formatting, you can use the following parameters:

• 𝑤 – date column width (default 2)

• 𝑙 – number of lines per week (default 1)

• 𝑐 – number of spaces between month columns (default 6)

• 𝑚 – number of columns (default 3)

The calendar function requires you to specify the year, while the other parameters
responsible for formatting are optional. You are encouraged to try these parameters
yourself.

A good alternative to the above function is the function called 𝑝𝑟𝑐𝑎𝑙, which also takes the
same parameters as the calendar function, but doesn't require the use of the print function
to display the calendar. Its use looks like this:

The 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 module has a function called 𝑚𝑜𝑛𝑡ℎ, which allows you to display a calendar
for a specific month. Its use is really simple, you just need to specify the year and month -
check out the code here.

import calendar

print(calendar.month(2022, 4))

The example displays the calendar for November 2020. As in the 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 function, you can
change the default formatting using the following parameters:

• 𝑤 – date column width (default 2)

• 𝑙 – number of lines per week (default 1)

You can also use the 𝑝𝑟𝑚𝑜𝑛𝑡ℎ function, which has the same parameters as the 𝑚𝑜𝑛𝑡ℎ
function, but doesn't require you to use the 𝑝𝑟𝑖𝑛𝑡 function to display the calendar.

As you already know, by default in the 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 module, the first day of the week is
Monday. However, you can change this behavior using a function called 𝑠𝑒𝑡𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦.

Do you remember the table showing the days of the week and their representation in the
form of integer values? It's time to use it, because the 𝑠𝑒𝑡𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦 method requires a
parameter expressing the day of the week in the form of an integer value. Take a look at the
example here.

import calendar

calendar.setfirstweekday(calendar.SUNDAY)

calendar.prmonth(2022, 4)

The example uses the 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑆𝑈𝑁𝐷𝐴𝑌 constant, which contains a value of 6. Of course,
you could pass this value directly to the 𝑠𝑒𝑡𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦 function, but the version with a
constant is more elegant.

As a result, we get a calendar showing the month of April 2022, in which the first day of all
the weeks is Sunday.

Another useful function provided by the 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 module is the function called 𝑤𝑒𝑒𝑘𝑑𝑎𝑦,
which returns the day of the week as an integer value for the given year, month, and day.
Let's see it here.

import calendar

print(calendar.weekday(2021, 12, 26)) # 6

The code here prints the day of the week that falls on December 26, 2021, remember that 6

means Sunday.

You've probably noticed that the calendar contains weekly headers in a shortened form. If
needed, you can get short weekday names using the 𝑤𝑒𝑒𝑘ℎ𝑒𝑎𝑑𝑒𝑟 method.

The 𝑤𝑒𝑒𝑘ℎ𝑒𝑎𝑑𝑒𝑟 method requires you to specify the width in characters for one day of the
week. If the width you provide is greater than 3, you'll still get the abbreviated weekday
names consisting of three characters.

import calendar

print(calendar.weekheader(2)) # Mo Tu We Th Fr Sa Su

If you change the first day of the week, e.g., using the 𝑠𝑒𝑡𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦 function, it'll affect
the result of the 𝑤𝑒𝑒𝑘ℎ𝑒𝑎𝑑𝑒𝑟 function.

The 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 module provides two useful functions to check whether years are leap years.

The first one, called 𝑖𝑠𝑙𝑒𝑎𝑝, returns 𝑇𝑟𝑢𝑒 if the past year is leap, or 𝐹𝑎𝑙𝑠𝑒 otherwise.

The second one, called 𝑙𝑒𝑎𝑝𝑑𝑎𝑦𝑠, returns the number of leap years in the given range of
years (exclusive).

import calendar

print(calendar.isleap(2020)) # True

print(calendar.leapdays(2010, 2021)) # 3

print(calendar.leapdays(2010, 2020)) # 2

The presented functions aren't everything the 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 module offers. In addition to them,
we can use the following classes:

• 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 – provides
methods to prepare calendar data for
formatting.

• 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑇𝑒𝑥𝑡𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 – is used to
create regular text calendars.

• 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝐻𝑇𝑀𝐿𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 – is used
to create HTML calendars.

• 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝐿𝑜𝑐𝑎𝑙𝑇𝑒𝑥𝑡𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 – is a
subclass of the
𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝑇𝑒𝑥𝑡𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class. The
constructor of this class takes the
locale parameter, which is used to
return the appropriate months and
weekday names.

• 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝐿𝑜𝑐𝑎𝑙𝐻𝑇𝑀𝐿𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 – is
a subclass of the
𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟. 𝐻𝑇𝑀𝐿𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class. The
constructor of this class takes the
locale parameter, which is used to
return the appropriate months and
weekday names.

Image source: Cisco/Python Institute

Creating a 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 object
The 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class constructor takes one optional parameter named 𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦, by

default equal to 0 (Monday).

The 𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦 parameter must be an integer between 0-6. For this purpose, we can
use the already-known constants.

import calendar

c = calendar.Calendar(calendar.SUNDAY)

for weekday in c.iterweekdays():

 print(weekday, end = " ") # 6 0 1 2 3 4 5

The code example uses the 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class method named 𝑖𝑡𝑒𝑟𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑠, which returns an
iterator for week day numbers.

The first value returned is always equal to the value of the 𝑓𝑖𝑟𝑠𝑡𝑤𝑒𝑒𝑘𝑑𝑎𝑦 property. As in
our example the first value returned is 6, it means that the week starts on a Sunday.

The 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class has several methods that return an iterator. One of them is the
𝑖𝑡𝑒𝑟𝑚𝑜𝑛𝑡ℎ𝑑𝑎𝑡𝑒𝑠 method, which requires specifying the year and month.

As a result, all days in the specified month and year are returned, as well as all days before
the beginning of the month or the end of the month that are necessary to get a complete
week.

Each day is represented by a 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒. 𝑑𝑎𝑡𝑒 object. Take a look here.

import calendar

c = calendar.Calendar()

for date in c.itermonthdates(2022, 4):

 print(date, end = " ")

The code displays all days in April 2022. Because the first day of April 2022 was a Friday,
some days are also returned to get the complete week.

Expected output:

2022-03-28 2022-03-29 2022-03-30 2022-03-31 2022-04-01 2022-04-02 2022-04-03 2022-
04-04 2022-04-05 2022-04-06 2022-04-07 2022-04-08 2022-04-09 2022-04-10 2022-04-11
2022-04-12 2022-04-13 2022-04-14 2022-04-15 2022-04-16 2022-04-17 2022-04-18 2022-
04-19 2022-04-20 2022-04-21 2022-04-22 2022-04-23 2022-04-24 2022-04-25 2022-04-26
2022-04-27 2022-04-28 2022-04-29 2022-04-30 2022-05-01

Another useful method in the 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class is the method called 𝑖𝑡𝑒𝑟𝑚𝑜𝑛𝑡ℎ𝑑𝑎𝑡𝑒𝑠, which

takes year and month as parameters, and then returns the iterator to the days of the week

represented by numbers.

import calendar

c = calendar.Calendar()

for iter in c.itermonthdays(2022, 4):

 print(iter, end = " ")

You’ll have certainly noticed the large number of 0s returned as a result of the example

code. These are days outside the specified month range that are added to keep the

complete week. The remaining numbers are days in the month.

There are four other similar methods in the 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class that differ in data returned:

• 𝑖𝑡𝑒𝑟𝑚𝑜𝑛𝑡ℎ𝑑𝑎𝑡𝑒𝑠2 – returns days in the form of tuples consisting of a day of the

month number and a week day number.

• 𝑖𝑡𝑒𝑟𝑚𝑜𝑛𝑡ℎ𝑑𝑎𝑡𝑒𝑠3 – returns days in the form of tuples consisting of a year, a month,

and a day of the month numbers. This method has been available since version 3.7.

• 𝑖𝑡𝑒𝑟𝑚𝑜𝑛𝑡ℎ𝑑𝑎𝑡𝑒𝑠4 – returns days in the form of tuples consisting of a year, a month,

a day of the month, and a day of the week numbers. This method has been available

since Python version 3.7.

The 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 class has several other useful methods that you can learn more about in the

documentation here: calendar — General calendar-related functions — Python 3.10.4

documentation.

One of them is the 𝑚𝑜𝑛𝑡ℎ𝑑𝑎𝑦𝑠2𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 method, which takes the year and month, and

then returns a list of weeks in a specific month. Each week is a tuple consisting of day

numbers and weekday numbers.

import calendar

c = calendar.Calendar()

for data in c.monthdays2calendar(2022, 4):

 print(data)

Note that the days numbers outside the month are represented by 0, while the weekday

numbers are a number from 0-6, where 0 is Monday and 6 is Sunday.

https://docs.python.org/3/library/calendar.html
https://docs.python.org/3/library/calendar.html

